All hypoenergetic graphs with maximum degree at most 3
نویسندگان
چکیده
منابع مشابه
All Connected Graphs with Maximum Degree at Most 3 whose Energies are Equal to the Number of Vertices
The energy E(G) of a graph G is defined as the sum of the absolute values of its eigenvalues. Let S2 be the star of order 2 (or K2) and Q be the graph obtained from S2 by attaching two pendent edges to each of the end vertices of S2. Majstorović et al. conjectured that S2, Q and the complete bipartite graphs K2,2 and K3,3 are the only 4 connected graphs with maximum degree ∆ ≤ 3 whose energies ...
متن کاملLaplacian Integral Graphs with Maximum Degree 3
A graph is said to be Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. Using combinatorial and matrix-theoretic techniques, we identify, up to isomorphism, the 21 connected Laplacian integral graphs of maximum degree 3 on at least 6 vertices.
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملLight subgraphs in graphs with average degree at most four
A graph H is said to be light in a family G of graphs if at least one member of G contains a copy of H and there exists an integer λ(H,G) such that each member G of G with a copy of H also has a copy K of H such that degG(v) ≤ λ(H,G) for all v ∈ V(K). In this paper, we study the light graphs in the class of graphs with small average degree, including the plane graphs with some restrictions on g...
متن کاملOn the Independence Number of Graphs with Maximum Degree 3
Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs shown in Figure 1 as a subgraph. We prove that the independence number of G is at least n(G)/3 + nt(G)/42, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. This bound is tight as implied by the wellknown tight lower bound of 5n(G)/14 on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2009
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.07.007